Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Intervalo de año de publicación
1.
J Chromatogr A ; 1717: 464705, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38310702

RESUMEN

This article presents the assembly and characterization of poly(diallyldimethylammonium chloride)/multi-walled carbon nanotubes (PDDA/MWCNTs) thin films on borosilicate bottles using a layer-by-layer (LBL) approach. The thin films, consisting of 10 bilayers of coating materials, were thoroughly characterized using UV-VIS spectroscopy, scanning electron microscopy (SEM), and zeta potential measurements. The modified bottles were then utilized for the extraction of analytes with diverse acid-base characteristics, including drugs, illicit drugs, and pesticides, from saliva, urine, and surface water samples. The studied analytes can be adsorbed on the surface of the LBL film mainly through hydrogen bonding and/or hydrophobic interactions. Remarkably high extraction percentages of up to 92 % were achieved, accompanied by an impressive enhancement in the analytical signal of up to 12 times when the sample volume was increased from 0.7 to 10 mL. These results highlight the outstanding extraction and sorption capabilities of the developed material. Additionally, the (PDDA/MWCNTs)10 films exhibited notable resistance to extraction and desorption processes, enabling their reuse for at least 5 cycles. The straightforward and cost-effective fabrication of these sorbent materials using the LBL technique, combined with the ability to extract target compounds during sample transportation and/or storage, renders this sample preparation method a promising alternative.


Asunto(s)
Nanopartículas Capa por Capa , Nanotubos de Carbono , Nanotubos de Carbono/química , Microscopía Electrónica de Rastreo
3.
Langmuir ; 39(14): 5002-5011, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-36989403

RESUMEN

We report on a new iron (iii)-cyamelurate-based coordination polymer. The new material based on a heptazine derivative was prepared in aqueous medium and characterized by a variety of techniques including TGA, FTIR, XRD, HRTEM, and STEM. Due to the high structural stability of the complex in aqueous media, its heterogeneous Fenton-like catalytic activity was evaluated using a model molecule. The results obtained showed a high catalytic activity in both in basic and acid media. The pseudo-first-order rate constants normalized by iron(III) concentrations was approximately 1000 times higher than the result obtained for traditional heterogeneous catalysts based on iron(III) oxyhydroxides. The best observed catalytic activities were attributed to the increase in the binding sites of Fe3+ ions, in parallel with the increased exposure of the catalytic sites, leading to a higher atomic efficiency of the reaction.

4.
Dent Mater ; 35(4): 564-573, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30711272

RESUMEN

OBJECTIVE: Glass-ionomer cements (GICs) modified with cellulose nanocrystals (CNs) were characterized and evaluated for compressive strength (CS), diametral tensile strength (DTS) and fluoride release (F-). METHODS: Commercially available GICs (Maxxion, Vidrion R, Vitro Molar, Ketac Molar Easy Mix and Fuji Gold Label 9) were reinforced with CNs (0.2% by weight). The microstructure of CNs and of CN-modified GICs were evaluated by transmission electron microscopy (TEM) and by scanning electron microscopy (SEM) while chemical characterization was by Fourier transform infrared spectroscopy (FTIR). Ten specimens each of the unmodified (control) and CN-modified materials (test materials) were prepared for CS and DTS testing. For the fluoride release evaluation, separate specimens (n=10) of each test and control material were made. The results obtained were submitted to the t-test (p<0.05). RESULTS: The CN reinforcement significantly improved the mechanical properties and significantly increased the F- release of all GICs (p<0.05). The GICs with CNs showed a fibrillar aggregate of nanoparticles interspersed in the matrix. The compounds with CNs showed a higher amount of C compared to the controls due to the organic nature of the CNs. It was not possible to identify by FTIR any chemical bond difference in the compounds formed when nanofibers were inserted in the GICs. SIGNIFICANCE: Modification of GICs with CNs appears to produce promising restorative materials.


Asunto(s)
Celulosa , Nanopartículas , Fuerza Compresiva , Cementos de Ionómero Vítreo , Ensayo de Materiales , Resistencia a la Tracción
5.
Nanomaterials (Basel) ; 9(1)2019 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-30626080

RESUMEN

Hydrogels have been studied as promising materials in different biomedical applications such as cell culture in tissue engineering or in wound healing. In this work, we synthesized different nanocellulose-alginate hydrogels containing cellulose nanocrystals, TEMPO-oxidized cellulose nanocrystals (CNCTs), cellulose nanofibers or TEMPO-oxidized cellulose nanofibers (CNFTs). The hydrogels were freeze-dried and named as gels. The nanocelluloses and the gels were characterized by different techniques such as Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and dynamic mechanical thermal analysis (DMTA), while the biological features were characterized by cytotoxicity and cell growth assays. The addition of CNCTs or CNFTs in alginate gels contributed to the formation of porous structure (diameter of pores in the range between 40 and 150 µm). TEMPO-oxidized cellulose nanofibers have proven to play a crucial role in improving the dimensional stability of the samples when compared to the pure alginate gels, mainly after a thermal post-treatment of these gels containing 50 wt % of CNFT, which significantly increased the Ca2+ crosslinking density in the gel structure. The morphological characteristics, the mechanical properties, and the non-cytotoxic behavior of the CNFT-alginate gels improved bioadhesion, growth, and proliferation of the cells onto the gels. Thus, the alginate-nanocellulose gels might find applications in tissue engineering field, as for instance, in tissue repair or wound healing applications.

6.
Braz Dent J ; 28(2): 172-178, 2017.
Artículo en Portugués | MEDLINE | ID: mdl-28492746

RESUMEN

Developing new restorative materials should avoid damage to tissue structures. This study evaluated the biocompatibility of a commercial dental glass ionomer cement (GIC) mechanically reinforced with cellulose microfibers (GIC+CM) or cellulose nanocrystals (GIC+CN) by implantation of three test specimens in subcutaneous tissue in the dorsal region of 15 Rattus norvegicus albinus rats. Each rat received one specimen of each cement, resulting in the following groups (n=15): Group GIC (Control), Group GIC+CM and Group GIC+NC. After time intervals of 7, 30 and 60 days, the animals were sacrificed and the following aspects were histologically evaluated: type of inflammatory cells, fibroblasts, blood vessels, macrophages, giant cells, type of inflammatory reaction and capsule thickness (µm). These events were scored as (-) absent, (+) light, (++) moderate and (+++) intense. The results were statistically analyzed by Kruskal-Wallis test and Mann-Whitney post test. At 7 days, Group GIC+NC showed more favorable tissue repair because quantitatively there were more fibroblasts (p=0.022), fewer macrophages (p=0.008) and mononuclear cells (p=0.033). Polymorphonuclear neutrophils and giant cells were absent in all experimental periods. At 60 days, test specimens in Group GIC+NC were surrounded by a fibrous tissue capsule with reduced thickness (26.72±2.87 µm) in comparison with Group GIC+CM (41.21±3.98 µm) (p=0.025). In general, all biomaterials showed satisfactory biocompatibility, but glass ionomer cement modified with cellulose nanocrystals showed a more advanced tissue repair.


Asunto(s)
Materiales Biocompatibles , Celulosa/química , Cementos de Ionómero Vítreo/química , Nanopartículas/química , Animales , Ratas
7.
Braz. dent. j ; 28(2): 172-178, mar.-Apr. 2017. tab, graf
Artículo en Portugués | LILACS | ID: biblio-839144

RESUMEN

Resumo Os novos materiais restauradores em desenvolvimento devem evitar danos aos tecidos dentários. Portanto, o objetivo deste estudo foi avaliar a biocompatibilidade de uma marca comercial de cimento de ionômero de vidro convencional (CIV) modificado com microfibras de celulose (CIV+MC) ou nanocristais de celulose (CIV+NC) através da implantação de três amostras em tecido subcutâneo na região dorsal de 15 ratos Rattus norvegicus albinus. Cada rato recebeu um exemplar de cada cimento, resultando nos seguintes grupos (n=15): Grupo CIV (controle, n=15), Grupo CIV+MC e Grupo CIV+NC. Nos intervalos de 7, 30 e 60 dias os animais foram sacrificados e os seguintes aspectos foram avaliados histologicamente: tipo de células inflamatórias, fibroblastos, vasos sanguíneos, macrófagos, células gigantes, tipo de reação inflamatória e espessura da cápsula (µm). Estes eventos foram quantitativamente classificados conforme os escores: (-) ausente, (+) suave, (++) moderado e (+++) intenso. Os resultados foram analisados estatisticamente pelo teste Kruskal-Wallis e pós-teste Mann-Whitney. Aos 7 dias, o Grupo CIV+NC demonstrou um nível mais elevado de reparação tecidual porque havia maior quantidade de fibroblastos (p=0,022) e uma menor quantidade de macrófagos (p=0,008) e células mononucleares (p=0,033). Neutrófilos e células gigantes estavam ausentes em todos os períodos experimentais. Aos 60 dias, o Grupo CIV+NC apresentou cápsula de tecido fibroso com espessura mais reduzida (26,72±2,87 µm) em comparação ao Grupo CIV+MC (41,21±3,98 µm (p=0,025). No geral, todos os materiais apresentaram satisfatória biocompatibilidade, no entanto, o cimento de ionômero de vidro modificado com nanocristais de celulose proveu reparação tecidual mais avançada comparativamente aos demais materiais avaliados.


Developing new restorative materials should avoid damage to tissue structures. This study evaluated the biocompatibility of a commercial dental glass ionomer cement (GIC) mechanically reinforced with cellulose microfibers (GIC+CM) or cellulose nanocrystals (GIC+CN) by implantation of three test specimens in subcutaneous tissue in the dorsal region of 15 Rattus norvegicus albinus rats. Each rat received one specimen of each cement, resulting in the following groups (n=15): Group GIC (Control), Group GIC+CM and Group GIC+NC. After time intervals of 7, 30 and 60 days, the animals were sacrificed and the following aspects were histologically evaluated: type of inflammatory cells, fibroblasts, blood vessels, macrophages, giant cells, type of inflammatory reaction and capsule thickness (µm). These events were scored as (-) absent, (+) light, (++) moderate and (+++) intense. The results were statistically analyzed by Kruskal-Wallis test and Mann-Whitney post test. At 7 days, Group GIC+NC showed more favorable tissue repair because quantitatively there were more fibroblasts (p=0.022), fewer macrophages (p=0.008) and mononuclear cells (p=0.033). Polymorphonuclear neutrophils and giant cells were absent in all experimental periods. At 60 days, test specimens in Group GIC+NC were surrounded by a fibrous tissue capsule with reduced thickness (26.72±2.87 µm) in comparison with Group GIC+CM (41.21±3.98 µm) (p=0.025). In general, all biomaterials showed satisfactory biocompatibility, but glass ionomer cement modified with cellulose nanocrystals showed a more advanced tissue repair.


Asunto(s)
Animales , Ratas , Materiales Biocompatibles , Celulosa/química , Nanopartículas/química , Cementos de Ionómero Vítreo/química
8.
J Adv Res ; 7(6): 947-959, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27812387

RESUMEN

Nitrilotriacetic acid functionalized Adansonia digitata (NFAD) biosorbent has been synthesized using a simple and novel method. NFAD was characterized by X-ray Diffraction analysis technique (XRD), Scanning Electron Microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area analyzer, Fourier Transform Infrared spectrometer (FTIR), particle size dispersion, zeta potential, elemental analysis (CHNS/O analyzer), thermogravimetric analysis (TGA), differential thermal analysis (DTA), derivative thermogravimetric analysis (DTG) and energy dispersive spectroscopy (EDS). The ability of NFAD as biosorbent was evaluated for the removal of Pb (II) and Cu (II) ions from aqueous solutions. The particle distribution of NFAD was found to be monomodal while SEM revealed the surface to be heterogeneous. The adsorption capacity of NFAD toward Pb (II) ions was 54.417 mg/g while that of Cu (II) ions was found to be 9.349 mg/g. The adsorption of these metals was found to be monolayer, second-order-kinetic, and controlled by both intra-particle diffusion and liquid film diffusion. The results of this study were compared better than some reported biosorbents in the literature. The current study has revealed NFAD to be an effective biosorbent for the removal of Pb (II) and Cu (II) from aqueous solution.

9.
J Colloid Interface Sci ; 432: 214-20, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25086396

RESUMEN

Chitosan solutions and cellulose nanocrystal suspensions were used to produce highly stable aqueous dispersions of multi-walled carbon nanotubes (MWCNTs). The different MWCNT dispersions, presenting positive and negative charges, were used to prepare multilayered hybrid thin films through electrostatic layer-by-layer (LBL) self-assembly. The MWCNTs are well dispersed and homogeneously distributed on each layer of chitosan and cellulose nanocrystals of the films. The nanotubes are densely packed in each multilayer, forming a random network. The surface of the LBL film exhibited a uniform and relatively smooth surface with a mean roughness value of ∼5.8±0.4nm. Electrochemical characterization revealed a decrease in two orders of magnitude in the film resistance as the number of bilayers increased from 5 to 20, which is a consequence of an increase in the amount of conductive material (MWCNT). The thin films with up to 20 bilayers exhibited transmittance higher than 90% in the visible range. The results presented in this work demonstrate the viability of the LBL technique for the deposition of active materials using the biopolymer pair chitosan/cellulose nanocrystals. The obtained films can be employed for the design of transparent and biocompatible carbon nanostructured based electrodes.

10.
Ciênc. rural ; 42(11): 2085-2091, nov. 2012. ilus, tab
Artículo en Portugués | LILACS | ID: lil-654325

RESUMEN

O objetivo do trabalho foi desenvolver uma embalagem biodegradável utilizando como matriz polimérica o amido de mandioca plastificada com glicerol e reforçada com a incorporação de nanocelulose da fibra de coco, bem como, avaliar o efeito da adição de um aditivo natural (erva-mate) nas formulações de nanobiocompósitos com ação antioxidante. Os nanocristais de celulose (L/D=39) foram obtidos por hidrólise ácida com H2SO4 a 65%. Os filmes foram preparados por casting contendo 4,5 e 6,0% de amido, 0,5 e 1,5% de glicerol, 0,3% de nanocelulose e 20% de extrato de erva-mate. O armazenamento do azeite de dendê embalado com os filmes contendo o aditivo foi monitorado por 40 dias sob condições de oxidação acelerada (63%UR/30°C). Constatou-se que, à medida que aumentam as perdas de Polifenóis Totais nos filmes, ocorre um menor aumento do Índice de Peróxidos do produto embalado, demonstrando, assim, que, ao invés do produto, os compostos da embalagem é quem estão sofrendo oxidação. A incorporação de extrato de erva-mate não alterou as propriedades mecânicas e de barreira desses filmes.


The objective was to develop biodegradable packaging using a polymer matrix as the cassava starch plasticized with glycerol and reinforced with the incorporation of nanocelulose of coconut fiber, as well as to evaluate the effect of the addition of an additive nature (yerba mate) in nanobiocompósitos formulations with antioxidant action. The nanocrystal cellulose (L/D=39) were obtained by acid hydrolysis with 65% H2SO4. The films were prepared by casting containing 4.5 and 6.0% starch, 0.5 and 1.5% glycerol, 0.3% nanocelulose and 20% extract of yerba mate. The palm oil storage packed with films containing the additive was monitored for 40 days under conditions of accelerated oxidation (63%UR/30°C). It was found that as the losses increase polyphenol films, there is a smaller increase of the peroxide value of the packaged product, thus demonstrating that instead of the product, the compounds of the package's who are suffering oxidation. The incorporation of yerba mate extract did not alter the mechanical and barrier properties of these films.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...